Selected Solution to Assignment 5

Supplementary Problems

1. (Optional) Let P be a plane given by the equation ax+by+cz = d. Show that the distance from a point (x_0, y_0, z_0) to P is given by the formula

$$\frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

Hint: Treat it as a constrained minimization problem.

Solution. Minimize the function $F(x, y, z) = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$ subject to the constraint $g(x, y, z) \equiv ax + by + cz - d = 0$. By Lagrange multipliers, the minimizer (x, y, z) satisfies $\partial F/\partial x = \lambda \partial g/\partial x$, $\partial F/\partial y = \lambda \partial g/\partial y$, $\partial F/\partial z = \lambda \partial g/\partial z$. In other words,

$$x - x_0 = \lambda a, \ y - y_0 = \lambda b, \ z - z_0 = \lambda c.$$

Plugging this into the constraint,

$$a(x_0 + \lambda a) + b(y_0 + \lambda b) + c(z_0 + \lambda c) = d$$

gives

$$\lambda = \frac{d - (ax_0 + by_0 + cz_0)}{a^2 + b^2 + c^2}$$

Using this, the minimizing point is attained at $x = x_0 + \lambda a$, $y = y + 0 + \lambda b$, $z = z_0 + \lambda c$ and the distance is given by

$$\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} = \sqrt{\lambda^2 a^2 + \lambda^2 b^2 + \lambda^2 c^2} = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}$$

2. Let Ω be a region in space which is symmetric with respect to the *xy*-plane, that is, $(x, y, z) \in \Omega$ if and only if $(x, y, -z) \in \Omega$. Show that

$$\iiint_{\Omega} f(x, y, z) \, dV = 0 \; ,$$

when f is odd in z, that is, f(x, y, -z) = -f(x, y, z) in Ω . You may assume Ω is of the form $\{(x, y, z) : f_1(x, y) \le z \le f_2(x, y), (x, y) \in D\}$.

Solution. By assumption, $f_1 = -f_2 \leq 0$ and so Ω can be decomposed into the union of Ω_1 and Ω_2 where $\Omega_1 = \{(x, y, z) : -f_2(x, y) \leq z \leq 0\}$ and $\Omega_2 = \{(x, y, z) : 0 \leq z \leq f_2(x, y)\}$. We have

$$\iiint_{\Omega} f \, dV = \iiint_{\Omega_1} f \, dV + \iiint_{\Omega_2} f \, dV$$

As

$$\begin{split} \iiint_{\Omega_1} f dV &= \iint_D \int_{-f_2(x,y)}^0 f(x,y,z) \, dz dA(x,y) \\ &= \iint_D \int_0^{f_2(x,y)} f(x,y,-z) \, dz dA(x,y) \\ &= -\iint_D \int_0^{f_2(x,y)} f(x,y,z) \, dz dA(x,y) \quad (\text{since } f \text{ is odd in } z) \\ &= -\iint_{\Omega_2} f \, dV \,, \end{split}$$

and the conclusion follows.